
www.manaraa.com

PROG0101 Fundamentals of Programming

1

PROG0101

FUNDAMENTALS OF PROGRAMMING

Chapter 2

Programming Languages

www.manaraa.com

PROG0101 Fundamentals of Programming

2

Programming Languages

Topics

• Definition of Program, Computer Programming, and

Computer Programmer.

• Generations of Programming Language

• Types of Programming Language

www.manaraa.com

PROG0101 Fundamentals of Programming

3

Programming Languages

Computer Program

• A program is a set of instructions following the rules

of the chosen language.

• Without programs, computers are useless.

• A program is like a recipe.

• It contains a list of ingredients (called variables) and

a list of directions (called statements) that tell the

computer what to do with the variables.

www.manaraa.com

PROG0101 Fundamentals of Programming

4

Programming Languages

Programming Language

• A vocabulary and set of grammatical rules (syntax)

for instructing a computer to perform specific tasks.

• Programming languages can be used to create

computer programs.

• The term programming language usually refers to

high-level languages, such as BASIC, C, C++,

COBOL, FORTRAN, Ada, and Pascal.

www.manaraa.com

PROG0101 Fundamentals of Programming

5

Programming Languages

Programming Language

• You eventually need to convert your program into

machine language so that the computer can

understand it.

• There are two ways to do this:

– Compile the program

– Interpret the program

www.manaraa.com

PROG0101 Fundamentals of Programming

6

Programming Languages

Programming Language

• Compile is to transform a program written in a high-

level programming language from source code into

object code.

• This can be done by using a tool called compiler.

• A compiler reads the whole source code and

translates it into a complete machine code program

to perform the required tasks which is output as a

new file.

www.manaraa.com

PROG0101 Fundamentals of Programming

7

Programming Languages

Programming Language

• Interpreter is a program that executes instructions

written in a high-level language.

• An interpreter reads the source code one instruction

or line at a time, converts this line into machine code

and executes it.

www.manaraa.com

PROG0101 Fundamentals of Programming

8

Programming Languages

Computer Programming

• Computer programming is the process of writing,

testing, debugging/troubleshooting, and maintaining

the source code of computer programs.

• This source code is written in a programming

language like C++, JAVA, Perl etc.

www.manaraa.com

PROG0101 Fundamentals of Programming

9

Programming Languages

Computer Programmer

• A programmer is someone who writes computer

program.

• Computer programmers write, test, and maintain

programs or software that tell the computer what to

do.

www.manaraa.com

PROG0101 Fundamentals of Programming

10

Programming Languages

What Skills are Required to Become a

Programmer?

• Programming - Writing computer programs for

various purposes.

• Writing - Communicating effectively with others in

writing as indicated by the needs of the audience.

• Reading Comprehension - Understanding written

sentences and paragraphs in work-related

documents.

• Critical Thinking - Using logic and analysis to

identify the strengths and weaknesses of different

approaches.

www.manaraa.com

PROG0101 Fundamentals of Programming

11

Programming Languages

What Skills are Required to Become a

Programmer?

• Computers and Electronics - Knowledge of electric
circuit boards, processors, chips, and computer
hardware and software, including applications and
programming.

• Mathematics - Knowledge of numbers, their
operations, and interrelationships including
arithmetic, algebra, geometry, calculus, statistics, and
their applications.

• Oral Expression - The ability to communicate
information and ideas in speaking so others will
understand.

www.manaraa.com

PROG0101 Fundamentals of Programming

12

Programming Languages

What Skills are Required to Become a

Programmer?

• Oral Comprehension - The ability to listen to and

understand information and ideas presented through

spoken words and sentences.

• Written Expression - The ability to communicate

information and ideas in writing so others will

understand.

• Written Comprehension - The ability to read and

understand information and ideas presented in

writing.

www.manaraa.com

PROG0101 Fundamentals of Programming

13

Programming Languages

What Skills are Required to Become a

Programmer?

• Deductive Reasoning - The ability to apply general

rules to specific problems to come up with logical

answers. It involves deciding if an answer makes

sense.

• Information Organization - Finding ways to

structure or classify multiple pieces of information.

www.manaraa.com

PROG0101 Fundamentals of Programming

14

Programming Languages

Generations of Programming Language

• The first generation languages, or 1GL, are low-

level languages that are machine language.

• The second generation languages, or 2GL, are

also low-level languages that generally consist of

assembly languages.

• The third generation languages, or 3GL, are high-

level languages such as C.

www.manaraa.com

PROG0101 Fundamentals of Programming

15

Programming Languages

Generations of Programming Language

• The fourth generation languages, or 4GL, are

languages that consist of statements similar to

statements in a human language. Fourth generation

languages are commonly used in database

programming and scripts.

• The fifth generation languages, or 5GL, are

programming languages that contain visual tools to

help develop a program. A good example of a fifth

generation language is Visual Basic.

www.manaraa.com

PROG0101 Fundamentals of Programming

16

Programming Languages

Types of Programming Language

• There are three types of programming language:

– Machine language (Low-level language)

– Assembly language (Low-level language)

– High-level language

• Low-level languages are closer to the language used

by a computer, while high-level languages are closer

to human languages.

www.manaraa.com

PROG0101 Fundamentals of Programming

17

Programming Languages

Machine Language

• Machine language is a collection of binary digits or

bits that the computer reads and interprets.

• Machine languages are the only languages

understood by computers.

• While easily understood by computers, machine

languages are almost impossible for humans to use

because they consist entirely of numbers.

www.manaraa.com

PROG0101 Fundamentals of Programming

18

Programming Languages

Machine Language

Machine Language

169 1 160 0 153 0 128 153 0 129 153 130 153 0 131

200 208 241 96

High level language

5 FOR I=1 TO 1000: PRINT "A";: NEXT I

www.manaraa.com

PROG0101 Fundamentals of Programming

19

Programming Languages

Machine Language

Example:

• Let us say that an electric toothbrush has a processor

and main memory.

• The processor can rotate the bristles left and right,

and can check the on/off switch.

• The machine instructions are one byte long, and

correspond to the following machine operations:

www.manaraa.com

PROG0101 Fundamentals of Programming

20

Programming Languages

Machine Language

Machine Instruction Machine Operation

0000 0000 Stop

0000 0001 Rotate bristles left

0000 0010 Rotate bristles right

0000 0100 Go back to start of program

0000 1000 Skip next instruction if switch is off

www.manaraa.com

PROG0101 Fundamentals of Programming

21

Programming Languages

Assembly Language

• A program written in assembly language consists of a

series of instructions mnemonics that correspond to a

stream of executable instructions, when translated by

an assembler, that can be loaded into memory and

executed.

• Assembly languages use keywords and symbols,

much like English, to form a programming language

but at the same time introduce a new problem.

www.manaraa.com

PROG0101 Fundamentals of Programming

22

Programming Languages

Assembly Language

• The problem is that the computer doesn't understand

the assembly code, so we need a way to convert it to

machine code, which the computer does understand.

• Assembly language programs are translated into

machine language by a program called an

assembler.

www.manaraa.com

PROG0101 Fundamentals of Programming

23

Programming Languages

Assembly Language

• Example:

– Machine language :

10110000 01100001

– Assembly language :

mov a1, #061h

– Meaning:

Move the hexadecimal value 61 (97 decimal) into

the processor register named "a1".

www.manaraa.com

PROG0101 Fundamentals of Programming

24

Programming Languages

High Level Language

• High-level languages allow us to write computer

code using instructions resembling everyday spoken

language (for example: print, if, while) which are

then translated into machine language to be

executed.

• Programs written in a high-level language need to

be translated into machine language before they

can be executed.

• Some programming languages use a compiler to

perform this translation and others use an

interpreter.

www.manaraa.com

PROG0101 Fundamentals of Programming

25

Programming Languages

High-Level Language

• Examples of High-level Language:

• ADA

• C

• C++

• JAVA

• BASIC

• COBOL

• PASCAL

• PHYTON

www.manaraa.com

PROG0101 Fundamentals of Programming

26

Programming Languages

Comparisson

Machine Language Assembly Language High-level Languages

Time to execute Since it is the basic

language of the

computer, it does not

require any translation,

and hence ensures

better machine

efficiency. This means

the programs run

faster.

A program called an

‘assembler’ is required

to convert the program

into machine language.

Thus, it takes longer to

execute than a

machine language

program.

A program called a

compiler or interpreter

is required to convert

the program into

machine language.

Thus, it takes more

time for a computer to

execute.

Time to develop Needs a lot of skill, as

instructions are very

lengthy and complex.

Thus, it takes more

time to program.

Simpler to use than

machine language,

though instruction

codes must be

memorized. It takes

less time to develop

programs as compared

to machine language.

Easiest to use. Takes

less time to develop

programs and, hence,

ensures better program

efficiency.

www.manaraa.com

PROG0101 Fundamentals of Programming

27

Programming Languages

BASIC

• Short for Beginner's All-purpose Symbolic

Instruction Code.

• Developed in the 1950s for teaching University

students to program and provided with every self-

respecting personal computer in the 1980s,

• BASIC has been the first programming language for

many programmers.

• It is also the foundation for Visual Basic.

www.manaraa.com

PROG0101 Fundamentals of Programming

28

Programming Languages

BASIC

Example:

PRINT "Hello world!"

www.manaraa.com

PROG0101 Fundamentals of Programming

29

Programming Languages

Visual Basic

• A programming language and environment

developed by Microsoft.

• Based on the BASIC language, Visual Basic was one

of the first products to provide a graphical

programming environment and a paint metaphor for

developing user interfaces.

www.manaraa.com

PROG0101 Fundamentals of Programming

30

Programming Languages

Visual Basic

Example:

MsgBox "Hello, World!“

www.manaraa.com

PROG0101 Fundamentals of Programming

31

Programming Languages

C

• Developed by Dennis Ritchie at Bell Labs in the mid

1970s.

• C is much closer to assembly language than are

most other high-level languages.

• The first major program written in C was the UNIX

operating system.

• The low-level nature of C, however, can make the

language difficult to use for some types of

applications.

www.manaraa.com

PROG0101 Fundamentals of Programming

32

Programming Languages

C

Example:

#include <stdio.h>

int main(void)

{

printf("hello, world\n");

return 0;

}

www.manaraa.com

PROG0101 Fundamentals of Programming

33

Programming Languages

C++

• A high-level programming language developed by

Bjarne Stroustrup at Bell Labs.

• C++ adds object-oriented features to its predecessor,

C.

• C++ is one of the most popular programming

language for graphical applications, such as those

that run in Windows and Macintosh environments.

www.manaraa.com

PROG0101 Fundamentals of Programming

34

Programming Languages

C++

Example:

#include <iostream>

int main()

{

std::cout << "Hello World!" << std::endl;

return 0;

}

www.manaraa.com

PROG0101 Fundamentals of Programming

35

Programming Languages

Pascal

• A high-level programming language developed by

Niklaus Wirth in the late 1960s.

• The language is named after Blaise Pascal, a

seventeenth-century French mathematician who

constructed one of the first mechanical adding

machines.

• It is a popular teaching language.

www.manaraa.com

PROG0101 Fundamentals of Programming

36

Programming Languages

Pascal

Example:

Program HelloWorld(output);

begin

writeLn('Hello, World!')

end.

www.manaraa.com

PROG0101 Fundamentals of Programming

37

Programming Languages

Java

• A high-level programming language developed by

Sun Microsystems.

• Java was originally called OAK, and was designed for

handheld devices and set-top boxes.

• Oak was unsuccessful so in 1995 Sun changed the

name to Java and modified the language to take

advantage of the burgeoning World Wide Web.

• Java is a general purpose programming language

with a number of features that make the language

well suited for use on the World Wide Web.

www.manaraa.com

PROG0101 Fundamentals of Programming

38

Programming Languages

Java

Example:

/* * Outputs "Hello, World!" and then exits */

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, World!");

}

}

www.manaraa.com

PROG0101 Fundamentals of Programming

39

Programming Languages

Choosing a Programming Language

Before you decide on what language to use, you should

consider the following:

• your server platform

• the server software you run

• your budget

• previous experience in programming

• the database you have chosen for your backend

